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Abstract. In this paper, we investigate various kinds of extensions of

twin-good rings. Moreover, we prove that every element of an abelian

neat ring R is twin-good if and only if R has no factor ring isomorphic to

Z2 or Z3. The main result of [25] states some conditions that any right

self-injective ring R is twin-good. We extend this result to any regular

Baer ring R by proving that every element of a regular Baer ring is twin-

good if and only if R has no factor ring isomorphic to Z2 or Z3. Also we

illustrate conditions under which extending modules, continuous modules

and some classes of vector space are twin-good.
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1. Introduction

Many authors have studied rings generated additively by their unit elements,

(See [1], [2], [3], [8], [9], [13], [14], [15], [23], ). The rings in which each element

is the sum of k units were called (s, k)-rings by Henriksen [13]. V ámos has
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called such rings k-good rings [27]. Particularly, a ring R is called 2-good if

each element of R can be expressed as the sum of 2 units in R . A ring R

is said to be twin-good if for each x ∈ R there exists a unit u ∈ R such that

both x + u and x − u are units in R (See [22]). Clearly every twin-good ring

is 2-good, but the reverse doesn’t always hold. For example, Z3 is 2-good but

not twin-good. For the first time this concept was discussed by Chen. Chen [6,

Theorem 3], proved that for an exchange ring with primitive factors artinian,

there exists a u ∈ U(R) such that 1R ± u ∈ U(R) if and only if, for any a ∈ R,

there exists a u ∈ U(R) such that a ± u ∈ U(R). In other words, He proved

that an exchange ring with primitive factors artinian is twin-good if and only

if 1R is twin-good.

In this paper in section 2, we give some examples of twin-good rings and their

related properties. In particular, we investigate some of extensions of twin-good

rings. Also, we prove that each element of any abelian neat ring R is twin-

good if and only if R has no factor ring isomorphic to Z2 or Z3. Srivastava and

Siddique ([25]) proved that every right self-injective ring R is twin-good if and

only if no factor ring of R isomorphic to Z2 or Z3. Since every regular right self-

injective ring is a Baer ring the natural question which arises from [25] is that:

which regular Baer rings are twin-good? In this paper we investigate conditions

that under which regular Baer and π-regular Baer rings are twin-good. Also

we will discuss on extending modules, continuous modules and some classes of

victor space which are twin-good.

2. Examples and Basic Properties

Throughout this paper all rings are considered associative with identity ele-

ment. For a ring R, J(R) will denote the Jacobson radical of R and Mn(R)

denotes the n by n matrix ring over R. We use |X| and c to denote the car-

dinality of a set X and the cardinality of the continuum, respectively. Before

discussing the main results we bring some example and properties of twin-good

rings.

Example 2.1. (i) Every divisor ring D, which is not isomorphic to Z2 or Z3,

is twin-good. For a ∈ D if a = 0, then a ± 1D ∈ U(D). If a ̸= 0, then there

exists b ̸= 0, 1 such that a(1± b) ∈ U(D).

(ii) For every ring R, J(R) is twin good.

(iii) If R ̸= 0 is a local ring and 2, 3 ∈ U(R), then R is twin-good.

The following observations were noted in [22], and their proofs are straightfor-

ward.

Lemma 2.2. For a ring R, we have the following:

(i) If R is twin-good then for any proper ideal I of R, the factor ring R/I is

also twin-good.
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(ii) If a factor ring R/I is twin-good and I ⊆ J(R), then R is twin-good. Thus,

in particular, it follows that a ring R is twin-good if and only if R/J(R) is twin-

good.

(iii) If R is a direct product of rings Ri where each Ri is twin-good, then R is

also twin-good.

Lemma 2.3. If R is an abelian regular ring, then Mn(R) is twin-good for each

n ≥ 2.

Proof. See [25, Corollary 7]. □
Remark 2.4. By Lemma 2.2 ,and Lemma 2.3 it is obvious that every semisimple

ring is twin-good.

Let S(R) be the nonempty set of all proper ideals of R generated by central

idempotents. Recall that the factor ring R/P is called a Pierce stalk of R if P

is a maximal element in S(R) (see [26]).

Proposition 2.5. For a ring R, the following statements are equivalent:

(1) R is twin-good.

(2) All homomorphism images of R are twin-good.

(3) All indecomposable factor rings of R are twin-good.

(4) R/I is twin-good for every ideal I of R contained in J(R).

(5) A/I is twin-good for every proper ideal I of R generated by central idem-

potents of R.

(6) All Pierce stalks of R are twin-good.

Proof. (1) ⇒ (2) ⇒ (3), (1) ⇒ (2) ⇒ (4) and (2) ⇒ (5) ⇒ (6) are trivial.

(4) ⇒ (1) See Lemma 2.2.

(6) ⇒ (1): If R is not twin-good, put

Ω ={I �R|I is a proper ideal generated by central idempotents of R such that

R/I is not twin-good}.
Then Ω ̸= ϕ since 0 ∈ Ω. It is clear that Ω contains a maximal element M .

We next prove that R/M is a Pierse stalk. Assume the contrary, so there

is a central idempotent e such that M + eR and M + (1 − e)R are proper

ideals of R and properly contain M . Since (M + eR) ∩ (M + (1− e)R) = M ,

(M + eR) + (M + (1 − e)R) = R, by Chinese Remainder Theorem, R/M ∼=
R/(M + eR)×R/(M + (1− e)R). The maximality of M implies that M + eR

and M + (1− e)R are not in Ω, hence R/(M + eR) and R/(M + (1− e)R) are

twin-good. So R/M is twin-good, and it yields a contradiction. Thus R/M

is a Pierce stalk, but R/M also is twin-good, which is a contradiction with

hypothesis.

(3) ⇒ (1) It is similar to (6) ⇒ (1), so we omit the proof. □

Let R[[x, σ]] denote the ring of skew formal power series over R, that is all

formal power series in x with coefficients from R with multiplication defined

by xr = σ(r)x for all r ∈ R. We have:
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Proposition 2.6. Let R be a ring. Then the ring R[[x, σ]] is twin-good if and

only if R is twin-good. In particular, R[[x]] is twin-good if and only if R is

twin-good.

Proof. If R[[x, σ]] is twin-good, by R ∼= R[[x, σ]]/(x) and Proposition 2.5, R is

twin-good. Conversely, suppose that R is twin-good. Let f(x) =
∑∞

i=0 aix
i ∈

R[[x, σ]]. There exist u, v, w ∈ U(R), such that, a0 = u + v , a0 = −u + w.

Then f(x) = u+ (v + a1x+ a2x
2 + . . .), f(x) = −u+ (w + a1x+ a2x

2 + . . .),

where (v + a1x+ a2x
2 + . . .), and (w + a1x+ a2x

2 + . . .) ∈ U(R[[x, σ]]). Thus

R[[x, σ]] is twin-good. □

Recall that a ring R is said to be semicommutative if for all a, b ∈ R, ab = 0

implies aRb = 0. Commutative rings, symmetric rings, reversible rings and

one-sided duo rings are all semicommutative (See [5]).

Remark 2.7. If R is semicommutative, then the polynomial ring R[x] is not

twin-good. Therefore; if R is commutative, symmetric, reversible, and one-

sided duo, then the polynomial ring R[x] is not twin-good.

Remark 2.8. A subring of a twin-good ring and the polynomial ring over a

twin-good ring need not be twin-good.

Indeed, if Q is the rational number field, then Q and Q[[x]] are both twin-good,

but the polynomial ring Q[x] over Q, as a subring of Q[[x]] is not twin-good.

Following Goodearl-Menal [11], an associative ring R is said to have unit 1-

stable range if aR + bR = R with a, b ∈ R implies that there exists some

u ∈ U(R) such that a + bu ∈ U(R). For example algebraic algebras over

infinite field satisfies unit 1-stable range. Here we have:

Proposition 2.9. Every ring R satisfying unit 1-stable range is twin-good.

Proof. For any a ∈ R, there exists u ∈ U(R) such that a ± 1.u ∈ U(R) since

aR+ 1.R = R. □

Corollary 2.10. If R is an algebraic algebra over an infinite field F , then R

is twin-good.

Corollary 2.11. If R satisfies unit 1-stable range condition, and e is any

idempotent in R, then eRe is twin-good.

Proof. The result follows from [28, Theorem 2.8] and Proposition 2.9. □

Corollary 2.12. Let e2 = e ∈ R. Then eR is twin-good if and only if so is

eRe.

Proof. Put σ : eR→ eRe, σ(x) = xe. It is easy to see that σ is an epimorphism,

kerσ = eR(1 − e), eR/kerσ ∼= eRe, and kerσ ⊆ J(eR) since (kerσ)2 = 0. So

by Lemma 2.2, the result follows. □
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Proposition 2.13. (1) Let e2 = e ∈ R. If eRe and (1 − e)R(1 − e) are both

twin-good, then R is twin-good.

(2) Let e be a central idempotent of R. Then R is twin-good if and only if so

are eR and (1− e)R.

Proof. (1) See [22, Theorem 6.11].

(2) Since e is a central idempotent the result follows from (1) and Proposition

2.5 (2). □

Corollary 2.14. If {e1, e2, . . . , em} is a complete set of pairwise orthogonal

idempotents in a ring R and each eiRei is twin-good, then so is R.

Proof. By Proposition 2.13(1), and induction on m, R is twin-good. □

Corollary 2.15. If R is twin-good, then so is the matrix ring Mn(R) for any

positive integer n.

Corollary 2.16. Let M1,M2, . . . ,Mn be submodules of M . If M =M1⊕M2⊕
. . . ⊕Mn are modules and End(Mi) is twin-good for each i, then End(M) is

twin-good.

Proposition 2.17. Let {e1, . . . , en} be a set of idempotents in a ring R. If

eiRei is twin-good, for each i = 1, . . . , n. Then the ring,

 e1Re1 . . . e1Ren
. . . . . . . . .

enRe1 . . . enRen


is twin-good.

Proof. By Proposition 2.13, the result holds for n = 2. Assume inductively

that the result holds for n = k ≥ 2. Let n = k + 1, and let

C =

 e2Re2 . . . e2Rek+1

. . . . . . . . .

ek+1Re2 . . . ek+1Rek+1


k×k

,

B =

 e2Re1
...

ek+1Re1


k×1

, A =
(
e1Re2 . . . e1Rek+1

)
1×k

.

Then C is twin-good. Now take D =

(
r a

b c

)
∈
(
e1Re1 A

B C

)
, similar to

the proof of Proposition 2.13(1), we can see that D is twin-good. □

Theorem 2.18. Let R be twin-good. Then the following statements hold:

(1) For any n ∈ N , the ring Tn(R) of (n × n) upper triangular matrices over

R is twin-good.

(2) Put QM2(R) = {
(
a b

c d

)
|a+ b = c+ d, a, b, c, d ∈ R}. Then QM2(R) is

twin-good.
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(3) For any n ∈ N , Sn(R) = {


a0 a1 a2 . . . an−1

0 a0 a1 . . . an−2

0 0 a0 . . . an−3

. . . . . . . . .

0 0 0 . . . a0

 |ai ∈ R, i =

0, 1, . . . , n− 1} is twin-good.

(4) For any n ∈ N , R[x]/(xn) is twin-good, where (xn) is the ideal generated

by xn.

Proof. (1) See [22, Corollary 6.15].

(2) Put ψ : QM2(R) → T2(R),

(
a b

c d

)
7→

(
a+ b b

0 d− b

)
. Then ψ is a

monomorphism of rings. Also, for any

(
x z

0 y

)
∈ T2(R), we have

ψ(

(
x− y z

x− y − z y + z

)
) =

(
x z

0 y

)
Hence ψ is an isomorphism of rings. This completes the proof by (1).

(3) Let A = (aij) ∈ Sn(R), where aij = 0 if i > j. By hypothesis there exist

ui, vi, wi ∈ U(R) such that a0 = ui + vi, a0 = −ui + wi, for each 1 ≤ i ≤ n.

Then A = diag(u1, u2, . . . , un) + B, A = diag(−u1,−u2, . . . ,−un) + C where

B = (bij), C = (cij) with bii = vi, cii = wi(1 ≤ i ≤ n) and bij = cij = aij for

(i ̸= j). It is clear that diag(u1, . . . , un), B, C ∈ U(Sn(R)).

(4) Note that R[x]/(xn) ∼= Sn(R), we obtain the result by (3). □

A ring R is called right Ore if given a, b ∈ R with b regular there exist a1, b1 ∈ R

with b1 regular, such that ab1 = ba1. It is a well-known fact that R is a right

Ore ring if and only if the classical right quotient ring of R exists.

Proposition 2.19. Let R be a right Ore ring and Q be the classical right

quotient ring of R. If R is twin-good, then so is Q.

Proof. For any r = ab−1 ∈ Q, where a, b ∈ R with b regular. By hypothesis

there exist u, v, w ∈ U(R) such that a = u+v and a = −u+w. Hence r = ub−1+

vb−1 and r = −ub−1+wb−1. It is clear that (ub−1)−1 = bu−1, (vb−1)−1 = bv−1

and (wb−1)−1 = bw−1 thus ub−1, vb−1 and wb−1 ∈ U(Q). Therefore Q is twin-

good. □

The converse of Proposition 2.19 is not true. For example, the rational number

field Q is the classical right quotient ring of Z, but Z is not twin-good.

3. Some Classes Of Twin-good Rings and Modules

Recall that a ring R is said to be clean if every element of R is the sum of a

unit and an idempotent. McGovern [19], defined that R is a neat ring if every

proper homomorphic image of R is clean. In particular, the ring of integers, Z
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and any nonlocal PID are examples of neat rings. A ring R is called Baer if the

left annihilator of every nonempty subset of R is generated by an idempotent.

The concept of a Baer ring was introduced by Kaplansky to abstract properties

of rings of operators on a Hilbert space in his 1965 book [16]. In this section

we will discuss some conditions under which, abelian neat rings, regular and

π-regular Baer rings are twin-good.

Lemma 3.1. A ring R ̸= 0 is local if and only if it is clean and 0 and 1 are

the only idempotents in R.

Proof. See [19, Lemma 14]. □

Theorem 3.2. Let R be an abelian neat ring then the following conditions are

equivalent:

(1) Every element of R is twin-good.

(2) Identity of R is twin-good.

(3) R has no factor ring isomorphic to Z2 or Z3.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.

Now, we try to show (3) ⇒ (1).

Suppose that R has no factor ring isomorphic to Z2 or Z3. Now we show that

each element of R is twin-good. Suppose, to the contrary, there exists a ∈ R

which is not twin-good.

Let Ω ={I | I is an ideal of R and a+ I is not twin-good in R/I} and L be the

maximal element of Ω. Clearly R/L is an indecomposable ring and hence has

no non-trivial idempotent. Since R/L is a clean ring and has no non-trivial

idempotent, by Lemma 3.1, R/L is a local ring. Now let T = R/L then T/J(T )

is a division ring. Let x = a+ L. Since x+ J(T ) is not twin-good in T/J(T );

T/J(T ) ∼= Z2 or T/J(T ) ∼= Z3, this contradicts the assumption. Thus, each

element of R is twin-good. □

Corollary 3.3. If R is an abelian neat ring and 2, 3 ∈ U(R), then R is twin-

good.

Corollary 3.4. Every abelian clean ring R is twin-good if and only if R has

no factor ring isomorphic to Z2 or Z3.

It is not necessary that every neat ring is twin-good and contrariwise. In other

words, the concepts of neat rings and twin-good ring are independent of each

other. This is illustrated by examples below.

Example 3.5. (i) The ring of integers Z, is a neat ring but it is not twin-good.

(ii) every Boolean ring with more than two elements is a neat ring but not

twin-good.

(iii) Let R = {diag(a1, a2, . . . , an)|a1, a2, . . . , an ∈ Z}. R is twin-good but Z is

a homomorphic image of R that is not clean; therefore, R is not a neat ring.
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Now we will investigate the circumstances that a regular Baer ring is twin-good.

Theorem 3.6. A ring R is a Baer ring if and only if R itself, regarded as a

regular R-module, is a Baer semisimple module.

Proof. See [12, Theorem 4] □

Theorem 3.7. Let R be a regular Baer ring then the following conditions are

equivalent:

(1) Every element of R is twin-good.

(2) Identity of R is twin-good.

(3) R has no factor ring isomorphic to Z2 or Z3.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.

Now, we try to show (3) ⇒ (1).

Suppose that no factor ring of R is isomorphic to Z2 or Z3. Now we show

that each element of R is a sum of two units. By previous Theorem R it-

self, regarded as a regular (left) right R-module, is a regular Baer semisimple

module; therefore, by [12, Proposition 2] R is the direct sum of a family of

Baer simple submodules. This family is not empty. We have RR =
⊕n

i=1Mi

while theMi are Baer simple R-submodules of R. Let RR =
⊕r

j=1M
nj

ij
, where

{Mi1 , . . . ,Mir} is a set of representatives of the isomorphism classes of Mi for

i = 1, . . . , n such that n1 + n2 + . . .+ nr = n. Then

R ∼= EndR(R) ∼= EndR(M
n1
i1

⊕ . . .⊕Mnr
ir

)

∼=


Hom(Mn1

i1
,Mn1

i1
) Hom(Mn1

i1
,Mn2

i2
) . . . Hom(Mn1

i1
,Mnr

ir
)

Hom(Mn2
i2
,Mn1

i1
) Hom(Mn2

i2
,Mn2

i2
) . . . Hom(Mn2

i2
,Mnr

ir
)

...
...

...

Hom(Mnr
ir
,Mn1

i1
) Hom(Mnr

ir
,Mn2

i2
) . . . Hom(Mnr

ir
,Mnr

ir
)


Now by this fact that Mil ≇Miĺ

for l ̸= ĺ and regularity of Hom(Mil ,Miĺ
) we

have Hom(Mil ,Miĺ
) = 0 ; therefore, Hom(Mnl

il
,M

nĺ
iĺ
) = 0. So

R ∼=


Hom(Mn1

i1
,Mn1

i1
) 0 . . . 0

0 Hom(Mn2
i2
,Mn2

i2
) . . . 0

...
...

...

0 0 . . . Hom(Mnr
ir
,Mnr

ir
)


Thus R ∼=

∏r
j=1EndR(M

nj

ij
) ∼=

∏r
j=1Mnj

(EndR(Mij )). As Mij is a Baer

simple R−module for each 1 ≤ j ≤ r, so EndR(Mij ) is a domain by [12,

Theorem 2]. In the other hand Dj := EndR(Mij ) is a regular domain , thus

is a division ring. Since R has no factor ring isomorphic to Z2 or Z3, so each

element of Mnj (Dj) for all 1 ≤ j ≤ r is a twin-good. Therefore, R is twin-

good. □
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Corollary 3.8. Let R be a regular ring and A its lattice of principal right

ideals. If A is a complete lattice, then R is twin-good if has no factor ring

isomorphic to Z2 or Z3.

Corollary 3.9. Let R be a regular ring with finite Goldie dimension then

Mn(R) is twin-good.

Proof. By [18, Theorems 6.59, 6.62, 7.55, 7.63], Mn(R) is a regular Baer ring,

thus Mn(R) is twin-good. □

A ring R is called π-regular if for each element a ∈ R there exists a positive

integer n (depending on a) and an element x ∈ R such that an = anxan. Since

the class of π-regular ring properly contains the class of regular rings, it is

interesting to investigate the twin-goodness of π-regular rings.

Theorem 3.10. Let R be a π-regular Baer ring with |Id(R)| < c. If R has no

factor ring isomorphic to Z2 or Z3 then R is twin-good.

Proof. Since R is a semilocal ring, R/J(R) is a semisimple ring and R/J(R) ∼=∏r
l=1Mnl

(Dl) while Dl is division ring for each l, so it is clear that R is twin-

good. □

4. Some Class of Twin-good Modules

We recall that the module MR is twin-good if its endomorphism ring is twin-

good. In this Section, we will give necessary and sufficient conditions for some

class of modules to be twin-good.

Corollary 4.1. Let R be a regular ring with finite Goldie dimension. Then

every finitely generated free R-module F , is twin-good.

Corollary 4.2. If R is a twin-good ring, then every free R-module of finite

rank is twin-good.

Recall that the module M is called an extending module if every closed sub-

module is a direct summand. Among examples of extending modules, we would

mention semisimple modules, injective modules and uniform modules.

Proposition 4.3. Let MR is an extending module such that its endomorphism

ring S is a regular ring. Then M is twin-good if and only if S has no factor

ring isomorphic to Z2 or Z3.

Proof. If M be an extending module such that its endomorphism ring S is a

regular ring, then M is a Baer module, and subsequently S is a Baer ring (See

[24, Proposition 4.12]). Therefore, the result follows from Theorem 3.7. □

Srivastava and Siddique [25] proved that every element of a right self-injective

ring is twin-good if and only if it has no factor ring isomorphic to Z2 or Z3 and

they extend this result to endomorphism ring of right quasi-continuous module
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with finite exchange property. As a continuous modules is quasi-continuous

with finite exchange property [20, Theorem 3.24], they proved that every el-

ement in the endomorphism ring of a continuous module, is twin-good if no

factor of its endomorphism ring is isomorphic to Z2 or Z3. Since every regular

self-injective ring is regular Baer ring, as an application of this fact and Theo-

rem 3.7, we give a shorter proof of some results of [25]. As a consequence we

get the following result:

Corollary 4.4. A right self-injective ring R is twin good if and only if R has

no factor ring isomorphic to Z2 or Z3.

Proposition 4.5. Let MR be a continuous module. Then each element of the

endomorphism ring ofMR is twin-good if and only if it has no factor isomorphic

to Z2 or Z3.

Proof. Let S = EndR(M). If M is a continuous module, by [20, Theorem

3.11 and Proposition 3.5], S = S/J(S) is a regular right continuous ring, thus

SS is an extending module with regular endomorphism ring. Therefore, by

Proposition 4.3, S is twin-good, so is M . □

Recall that if V is a right vector space over a division ring D, then EndD(V )

is a regular Baer ring, in fact we have:

Corollary 4.6. Every element of EndD(V ) is twin-good, except when dim(VD) =

1 and D = Z2 or Z3.

Corollary 4.7. If V is a vector space of finite dimension n > 1 over the field

Z2, then V is twin-good.

Corollary 4.8. If V is a vector space of countably infinite dimension over an

arbitrary field F , then V is twin-good.
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