DOI: 10.7508/ijmsi.2017.01.010

On Twin-good Rings

Nahid Ashrafi^{a,*}, Neda Pouyan^b

^aDepartment of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran.
 ^bDepartment of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran.

E-mail: nashrafi@semnan.ac.ir
E-mail:n_pouyan@sun.semnan.ac.ir

ABSTRACT. In this paper, we investigate various kinds of extensions of twin-good rings. Moreover, we prove that every element of an abelian neat ring R is twin-good if and only if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . The main result of [25] states some conditions that any right self-injective ring R is twin-good. We extend this result to any regular Baer ring R by proving that every element of a regular Baer ring is twin-good if and only if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . Also we illustrate conditions under which extending modules, continuous modules and some classes of vector space are twin-good.

Keywords: Twin-good ring, Neat ring, Regular Baer ring, π -Regular baer ring.

2000 Mathematics subject classification: 16U60, 16D10, 16S50, 16S34.

1. Introduction

Many authors have studied rings generated additively by their unit elements, (See [1], [2], [3], [8], [9], [13], [14], [15], [23],). The rings in which each element is the sum of k units were called (s,k)-rings by Henriksen [13]. $V\acute{a}mos$ has

^{*}Corresponding Author

called such rings k-good rings [27]. Particularly, a ring R is called 2-good if each element of R can be expressed as the sum of 2 units in R. A ring R is said to be twin-good if for each $x \in R$ there exists a unit $u \in R$ such that both x + u and x - u are units in R (See [22]). Clearly every twin-good ring is 2-good, but the reverse doesn't always hold. For example, \mathbb{Z}_3 is 2-good but not twin-good. For the first time this concept was discussed by Chen. Chen [6, Theorem 3], proved that for an exchange ring with primitive factors artinian, there exists a $u \in U(R)$ such that $1_R \pm u \in U(R)$ if and only if, for any $a \in R$, there exists a $u \in U(R)$ such that $a \pm u \in U(R)$. In other words, He proved that an exchange ring with primitive factors artinian is twin-good if and only if 1_R is twin-good.

In this paper in section 2, we give some examples of twin-good rings and their related properties. In particular, we investigate some of extensions of twin-good rings. Also, we prove that each element of any abelian neat ring R is twin-good if and only if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . Srivastava and Siddique ([25]) proved that every right self-injective ring R is twin-good if and only if no factor ring of R isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . Since every regular right self-injective ring is a Baer ring the natural question which arises from [25] is that: which regular Baer rings are twin-good? In this paper we investigate conditions that under which regular Baer and π -regular Baer rings are twin-good. Also we will discuss on extending modules, continuous modules and some classes of victor space which are twin-good.

2. Examples and Basic Properties

Throughout this paper all rings are considered associative with identity element. For a ring R, J(R) will denote the Jacobson radical of R and $M_n(R)$ denotes the n by n matrix ring over R. We use |X| and c to denote the cardinality of a set X and the cardinality of the continuum, respectively. Before discussing the main results we bring some example and properties of twin-good rings.

EXAMPLE 2.1. (i) Every divisor ring D, which is not isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 , is twin-good. For $a \in D$ if a = 0, then $a \pm 1_D \in U(D)$. If $a \neq 0$, then there exists $b \neq 0, 1$ such that $a(1 \pm b) \in U(D)$.

- (ii) For every ring R, J(R) is twin good.
- (iii) If $R \neq 0$ is a local ring and $2, 3 \in U(R)$, then R is twin-good.

The following observations were noted in [22], and their proofs are straightforward.

Lemma 2.2. For a ring R, we have the following:

(i) If R is twin-good then for any proper ideal I of R, the factor ring R/I is also twin-good.

- (ii) If a factor ring R/I is twin-good and $I \subseteq J(R)$, then R is twin-good. Thus, in particular, it follows that a ring R is twin-good if and only if R/J(R) is twin-good.
- (iii) If R is a direct product of rings R_i where each R_i is twin-good, then R is also twin-good.

Lemma 2.3. If R is an abelian regular ring, then $M_n(R)$ is twin-good for each $n \geq 2$.

Proof. See [25, Corollary 7]. \Box

Remark 2.4. By Lemma 2.2, and Lemma 2.3 it is obvious that every semisimple ring is twin-good.

Let S(R) be the nonempty set of all proper ideals of R generated by central idempotents. Recall that the factor ring R/P is called a *Pierce stalk* of R if P is a maximal element in S(R) (see [26]).

Proposition 2.5. For a ring R, the following statements are equivalent:

- (1) R is twin-good.
- (2) All homomorphism images of R are twin-good.
- (3) All indecomposable factor rings of R are twin-good.
- (4) R/I is twin-good for every ideal I of R contained in J(R).
- (5) A/I is twin-good for every proper ideal I of R generated by central idempotents of R.
- (6) All Pierce stalks of R are twin-good.

Proof. $(1) \Rightarrow (2) \Rightarrow (3), (1) \Rightarrow (2) \Rightarrow (4) \text{ and } (2) \Rightarrow (5) \Rightarrow (6) \text{ are trivial.}$

- $(4) \Rightarrow (1)$ See Lemma 2.2.
- $(6) \Rightarrow (1)$: If R is not twin-good, put
- $\Omega = \{I \triangleleft R | I \text{ is a proper ideal generated by central idempotents of } R \text{ such that } R/I \text{ is not twin-good}\}.$

Then $\Omega \neq \phi$ since $0 \in \Omega$. It is clear that Ω contains a maximal element M. We next prove that R/M is a Pierse stalk. Assume the contrary, so there is a central idempotent e such that M+eR and M+(1-e)R are proper ideals of R and properly contain M. Since $(M+eR)\cap (M+(1-e)R)=M$, (M+eR)+(M+(1-e)R)=R, by Chinese Remainder Theorem, $R/M\cong R/(M+eR)\times R/(M+(1-e)R)$. The maximality of M implies that M+eR and M+(1-e)R are not in Ω , hence R/(M+eR) and R/(M+(1-e)R) are twin-good. So R/M is twin-good, and it yields a contradiction. Thus R/M is a Pierce stalk, but R/M also is twin-good, which is a contradiction with hypothesis.

 $(3) \Rightarrow (1)$ It is similar to $(6) \Rightarrow (1)$, so we omit the proof.

Let $R[[x,\sigma]]$ denote the ring of skew formal power series over R, that is all formal power series in x with coefficients from R with multiplication defined by $xr = \sigma(r)x$ for all $r \in R$. We have:

Proposition 2.6. Let R be a ring. Then the ring $R[[x,\sigma]]$ is twin-good if and only if R is twin-good. In particular, R[[x]] is twin-good if and only if R is twin-good.

Proof. If $R[[x,\sigma]]$ is twin-good, by $R \cong R[[x,\sigma]]/(x)$ and Proposition 2.5, R is twin-good. Conversely, suppose that R is twin-good. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i \in R[[x,\sigma]]$. There exist $u,v,w \in U(R)$, such that, $a_0 = u+v$, $a_0 = -u+w$. Then $f(x) = u + (v + a_1x + a_2x^2 + \ldots)$, $f(x) = -u + (w + a_1x + a_2x^2 + \ldots)$, where $(v + a_1x + a_2x^2 + \ldots)$, and $(w + a_1x + a_2x^2 + \ldots) \in U(R[[x,\sigma]])$. Thus $R[[x,\sigma]]$ is twin-good.

Recall that a ring R is said to be *semicommutative* if for all $a, b \in R$, ab = 0 implies aRb = 0. Commutative rings, symmetric rings, reversible rings and one-sided duo rings are all semicommutative (See [5]).

Remark 2.7. If R is semicommutative, then the polynomial ring R[x] is not twin-good. Therefore; if R is commutative, symmetric, reversible, and one-sided duo, then the polynomial ring R[x] is not twin-good.

Remark 2.8. A subring of a twin-good ring and the polynomial ring over a twin-good ring need not be twin-good.

Indeed, if \mathbb{Q} is the rational number field, then \mathbb{Q} and $\mathbb{Q}[[x]]$ are both twin-good, but the polynomial ring $\mathbb{Q}[x]$ over \mathbb{Q} , as a subring of $\mathbb{Q}[[x]]$ is not twin-good.

Following Goodearl-Menal [11], an associative ring R is said to have unit 1-stable range if aR + bR = R with $a, b \in R$ implies that there exists some $u \in U(R)$ such that $a + bu \in U(R)$. For example algebraic algebras over infinite field satisfies unit 1-stable range. Here we have:

Proposition 2.9. Every ring R satisfying unit 1-stable range is twin-good.

Proof. For any $a \in R$, there exists $u \in U(R)$ such that $a \pm 1.u \in U(R)$ since aR + 1.R = R.

Corollary 2.10. If R is an algebraic algebra over an infinite field F, then R is twin-good.

Corollary 2.11. If R satisfies unit 1-stable range condition, and e is any idempotent in R, then eRe is twin-good.

Proof. The result follows from [28, Theorem 2.8] and Proposition 2.9.

Corollary 2.12. Let $e^2 = e \in R$. Then eR is twin-good if and only if so is eRe.

Proof. Put $\sigma: eR \to eRe$, $\sigma(x) = xe$. It is easy to see that σ is an epimorphism, $ker\sigma = eR(1-e)$, $eR/ker\sigma \cong eRe$, and $ker\sigma \subseteq J(eR)$ since $(ker\sigma)^2 = 0$. So by Lemma 2.2, the result follows.

Proposition 2.13. (1) Let $e^2 = e \in R$. If eRe and (1 - e)R(1 - e) are both twin-good, then R is twin-good.

(2) Let e be a central idempotent of R. Then R is twin-good if and only if so are eR and (1-e)R.

Proof. (1) See [22, Theorem 6.11].

(2) Since e is a central idempotent the result follows from (1) and Proposition 2.5 (2).

Corollary 2.14. If $\{e_1, e_2, \ldots, e_m\}$ is a complete set of pairwise orthogonal idempotents in a ring R and each e_iRe_i is twin-good, then so is R.

Proof. By Proposition 2.13(1), and induction on m, R is twin-good.

Corollary 2.15. If R is twin-good, then so is the matrix ring $M_n(R)$ for any positive integer n.

Corollary 2.16. Let M_1, M_2, \ldots, M_n be submodules of M. If $M = M_1 \oplus M_2 \oplus \ldots \oplus M_n$ are modules and $End(M_i)$ is twin-good for each i, then End(M) is twin-good.

Proposition 2.17. Let $\{e_1, \ldots, e_n\}$ be a set of idempotents in a ring R. If e_iRe_i is twin-good, for each $i=1,\ldots,n$. Then the ring, $\begin{pmatrix} e_1Re_1 & \ldots & e_1Re_n \\ \ldots & \ldots & \ldots \\ e_nRe_1 & \ldots & e_nRe_n \end{pmatrix}$ is twin-good.

Proof. By Proposition 2.13, the result holds for n=2. Assume inductively that the result holds for $n=k\geq 2$. Let n=k+1, and let

$$C = \begin{pmatrix} e_2 R e_2 & \dots & e_2 R e_{k+1} \\ \dots & \dots & \dots \\ e_{k+1} R e_2 & \dots & e_{k+1} R e_{k+1} \end{pmatrix}_{k \times k},$$

$$B = \begin{pmatrix} e_2 R e_1 \\ \vdots \\ e_{k+1} R e_1 \end{pmatrix}_{k \times 1}, A = \begin{pmatrix} e_1 R e_2 & \dots & e_1 R e_{k+1} \end{pmatrix}_{1 \times k}.$$

Then C is twin-good. Now take $D = \begin{pmatrix} r & a \\ b & c \end{pmatrix} \in \begin{pmatrix} e_1Re_1 & A \\ B & C \end{pmatrix}$, similar to the proof of Proposition 2.13(1), we can see that D is twin-good.

Theorem 2.18. Let R be twin-good. Then the following statements hold:

(1) For any $n \in N$, the ring $T_n(R)$ of $(n \times n)$ upper triangular matrices over R is twin-good.

(2) Put $QM_2(R) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a+b=c+d, a, b, c, d \in R \}$. Then $QM_2(R)$ is twin-good.

(3) For any
$$n \in N$$
, $S_n(R) = \left\{ \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} \\ 0 & a_0 & a_1 & \dots & a_{n-2} \\ 0 & 0 & a_0 & \dots & a_{n-3} \\ \dots & & \dots & & \dots \\ 0 & 0 & 0 & \dots & a_0 \end{pmatrix} \middle| a_i \in R, i = 1$

 $0,1,\ldots,n-1$ is twin-good.

(4) For any $n \in N$, $R[x]/(x^n)$ is twin-good, where (x^n) is the ideal generated by x^n .

Proof. (1) See [22, Corollary 6.15].

(2) Put
$$\psi: QM_2(R) \to T_2(R)$$
, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a+b & b \\ 0 & d-b \end{pmatrix}$. Then ψ is a monomorphism of rings. Also, for any $\begin{pmatrix} x & z \\ 0 & y \end{pmatrix} \in T_2(R)$, we have

$$\psi\left(\left(\begin{array}{cc} x-y & z\\ x-y-z & y+z \end{array}\right)\right) = \left(\begin{array}{cc} x & z\\ 0 & y \end{array}\right)$$

Hence ψ is an isomorphism of rings. This completes the proof by (1).

(3) Let $A = (a_{ij}) \in S_n(R)$, where $a_{ij} = 0$ if i > j. By hypothesis there exist $u_i, v_i, w_i \in U(R)$ such that $a_0 = u_i + v_i$, $a_0 = -u_i + w_i$, for each $1 \le i \le n$. Then $A = diag(u_1, u_2, \ldots, u_n) + B$, $A = diag(-u_1, -u_2, \ldots, -u_n) + C$ where $B = (b_{ij}), C = (c_{ij})$ with $b_{ii} = v_i, c_{ii} = w_i (1 \le i \le n)$ and $b_{ij} = c_{ij} = a_{ij}$ for $(i \ne j)$. It is clear that $diag(u_1, \ldots, u_n), B, C \in U(S_n(R))$.

(4) Note that
$$R[x]/(x_n) \cong S_n(R)$$
, we obtain the result by (3).

A ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_1, b_1 \in R$ with b_1 regular, such that $ab_1 = ba_1$. It is a well-known fact that R is a right Ore ring if and only if the classical right quotient ring of R exists.

Proposition 2.19. Let R be a right Ore ring and Q be the classical right quotient ring of R. If R is twin-good, then so is Q.

Proof. For any $r=ab^{-1}\in Q$, where $a,b\in R$ with b regular. By hypothesis there exist $u,v,w\in U(R)$ such that a=u+v and a=-u+w. Hence $r=ub^{-1}+vb^{-1}$ and $r=-ub^{-1}+wb^{-1}$. It is clear that $(ub^{-1})^{-1}=bu^{-1},(vb^{-1})^{-1}=bv^{-1}$ and $(wb^{-1})^{-1}=bw^{-1}$ thus ub^{-1},vb^{-1} and $wb^{-1}\in U(Q)$. Therefore Q is twingood.

The converse of Proposition 2.19 is not true. For example, the rational number field \mathbb{Q} is the classical right quotient ring of \mathbb{Z} , but \mathbb{Z} is not twin-good.

3. Some Classes Of Twin-good Rings and Modules

Recall that a ring R is said to be clean if every element of R is the sum of a unit and an idempotent. McGovern [19], defined that R is a *neat ring* if every proper homomorphic image of R is clean. In particular, the ring of integers, \mathbb{Z}

and any nonlocal PID are examples of neat rings. A ring R is called Baer if the left annihilator of every nonempty subset of R is generated by an idempotent. The concept of a Baer ring was introduced by Kaplansky to abstract properties of rings of operators on a Hilbert space in his 1965 book [16]. In this section we will discuss some conditions under which, abelian neat rings, regular and π -regular Baer rings are twin-good.

Lemma 3.1. A ring $R \neq 0$ is local if and only if it is clean and 0 and 1 are the only idempotents in R.

Proof. See [19, Lemma 14]. \Box

Theorem 3.2. Let R be an abelian neat ring then the following conditions are equivalent:

- (1) Every element of R is twin-good.
- (2) Identity of R is twin-good.
- (3) R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

Now, we try to show $(3) \Rightarrow (1)$.

Suppose that R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . Now we show that each element of R is twin-good. Suppose, to the contrary, there exists $a \in R$ which is not twin-good.

Let $\Omega = \{I \mid I \text{ is an ideal of } R \text{ and } a+I \text{ is not twin-good in } R/I\}$ and L be the maximal element of Ω . Clearly R/L is an indecomposable ring and hence has no non-trivial idempotent. Since R/L is a clean ring and has no non-trivial idempotent, by Lemma 3.1, R/L is a local ring. Now let T = R/L then T/J(T) is a division ring. Let x = a + L. Since x + J(T) is not twin-good in T/J(T); $T/J(T) \cong \mathbb{Z}_2$ or $T/J(T) \cong \mathbb{Z}_3$, this contradicts the assumption. Thus, each element of R is twin-good.

Corollary 3.3. If R is an abelian neat ring and $2, 3 \in U(R)$, then R is twingood.

Corollary 3.4. Every abelian clean ring R is twin-good if and only if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

It is not necessary that every neat ring is twin-good and contrariwise. In other words, the concepts of neat rings and twin-good ring are independent of each other. This is illustrated by examples below.

EXAMPLE 3.5. (i) The ring of integers \mathbb{Z} , is a neat ring but it is not twin-good. (ii) every Boolean ring with more than two elements is a neat ring but not twin-good.

(iii) Let $R = \{diag(a_1, a_2, \dots, a_n) | a_1, a_2, \dots, a_n \in \mathbb{Z}\}$. R is twin-good but \mathbb{Z} is a homomorphic image of R that is not clean; therefore, R is not a neat ring.

Now we will investigate the circumstances that a regular Baer ring is twin-good.

Theorem 3.6. A ring R is a Baer ring if and only if R itself, regarded as a regular R-module, is a Baer semisimple module.

Proof. See
$$[12, Theorem 4]$$

Theorem 3.7. Let R be a regular Baer ring then the following conditions are equivalent:

- (1) Every element of R is twin-good.
- (2) Identity of R is twin-good.
- (3) R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

Now, we try to show $(3) \Rightarrow (1)$.

Suppose that no factor ring of R is isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . Now we show that each element of R is a sum of two units. By previous Theorem R itself, regarded as a regular (left) right R-module, is a regular Baer semisimple module; therefore, by [12, Proposition 2] R is the direct sum of a family of Baer simple submodules. This family is not empty. We have $R_R = \bigoplus_{i=1}^n M_i$ while the M_i are Baer simple R-submodules of R. Let $R_R = \bigoplus_{j=1}^r M_{i_j}^{n_j}$, where $\{M_{i_1}, \ldots, M_{i_r}\}$ is a set of representatives of the isomorphism classes of M_i for $i=1,\ldots,n$ such that $n_1+n_2+\ldots+n_r=n$. Then

$$R \cong End_R(R) \cong End_R(M_{i_1}^{n_1} \oplus \ldots \oplus M_{i_r}^{n_r})$$

$$\cong \left(\begin{array}{cccc} Hom(M_{i_1}^{n_1},M_{i_1}^{n_1}) & Hom(M_{i_1}^{n_1},M_{i_2}^{n_2}) & \dots & Hom(M_{i_1}^{n_1},M_{i_r}^{n_r}) \\ Hom(M_{i_2}^{n_2},M_{i_1}^{n_1}) & Hom(M_{i_2}^{n_2},M_{i_2}^{n_2}) & \dots & Hom(M_{i_2}^{n_2},M_{i_r}^{n_r}) \\ \vdots & & \vdots & & \vdots \\ Hom(M_{i_r}^{n_r},M_{i_1}^{n_1}) & Hom(M_{i_r}^{n_r},M_{i_2}^{n_2}) & \dots & Hom(M_{i_r}^{n_r},M_{i_r}^{n_r}) \end{array}\right)$$

Now by this fact that $M_{i_l} \ncong M_{i_l}$ for $l \ne l$ and regularity of $Hom(M_{i_l}, M_{i_l})$ we have $Hom(M_{i_l}, M_{i_l}) = 0$; therefore, $Hom(M_{i_l}^{n_l}, M_{i_l}^{n_l}) = 0$. So

$$R \cong \left(\begin{array}{cccc} Hom(M_{i_1}^{n_1}, M_{i_1}^{n_1}) & 0 & \dots & 0 \\ 0 & Hom(M_{i_2}^{n_2}, M_{i_2}^{n_2}) & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & Hom(M_{i_r}^{n_r}, M_{i_r}^{n_r}) \end{array} \right)$$

Thus $R \cong \prod_{j=1}^r End_R(M_{i_j}^{n_j}) \cong \prod_{j=1}^r M_{n_j}(End_R(M_{i_j}))$. As M_{i_j} is a Baer simple R-module for each $1 \leq j \leq r$, so $End_R(M_{i_j})$ is a domain by [12, Theorem 2]. In the other hand $D_j := End_R(M_{i_j})$ is a regular domain , thus is a division ring. Since R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 , so each element of $M_{n_j}(D_j)$ for all $1 \leq j \leq r$ is a twin-good. Therefore, R is twin-good.

Corollary 3.8. Let R be a regular ring and A its lattice of principal right ideals. If A is a complete lattice, then R is twin-good if has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

Corollary 3.9. Let R be a regular ring with finite Goldie dimension then $M_n(R)$ is twin-good.

Proof. By [18, Theorems 6.59, 6.62, 7.55, 7.63], $M_n(R)$ is a regular Baer ring, thus $M_n(R)$ is twin-good.

A ring R is called π -regular if for each element $a \in R$ there exists a positive integer n (depending on a) and an element $x \in R$ such that $a^n = a^n x a^n$. Since the class of π -regular ring properly contains the class of regular rings, it is interesting to investigate the twin-goodness of π -regular rings.

Theorem 3.10. Let R be a π -regular Baer ring with |Id(R)| < c. If R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 then R is twin-good.

Proof. Since R is a semilocal ring, R/J(R) is a semisimple ring and $R/J(R) \cong \prod_{l=1}^r M_{n_l}(D_l)$ while D_l is division ring for each l, so it is clear that R is twingood.

4. Some Class of Twin-good Modules

We recall that the module M_R is twin-good if its endomorphism ring is twin-good. In this Section, we will give necessary and sufficient conditions for some class of modules to be twin-good.

Corollary 4.1. Let R be a regular ring with finite Goldie dimension. Then every finitely generated free R-module F, is twin-good.

Corollary 4.2. If R is a twin-good ring, then every free R-module of finite rank is twin-good.

Recall that the module M is called an extending module if every closed submodule is a direct summand. Among examples of extending modules, we would mention semisimple modules, injective modules and uniform modules.

Proposition 4.3. Let M_R is an extending module such that its endomorphism ring S is a regular ring. Then M is twin-good if and only if S has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

Proof. If M be an extending module such that its endomorphism ring S is a regular ring, then M is a Baer module, and subsequently S is a Baer ring (See [24, Proposition 4.12]). Therefore, the result follows from Theorem 3.7.

Srivastava and Siddique [25] proved that every element of a right self-injective ring is twin-good if and only if it has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 and they extend this result to endomorphism ring of right quasi-continuous module

with finite exchange property. As a continuous modules is quasi-continuous with finite exchange property [20, Theorem 3.24], they proved that every element in the endomorphism ring of a continuous module, is twin-good if no factor of its endomorphism ring is isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 . Since every regular self-injective ring is regular Baer ring, as an application of this fact and Theorem 3.7, we give a shorter proof of some results of [25]. As a consequence we get the following result:

Corollary 4.4. A right self-injective ring R is twin good if and only if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

Proposition 4.5. Let M_R be a continuous module. Then each element of the endomorphism ring of M_R is twin-good if and only if it has no factor isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3 .

Proof. Let $S = End_R(M)$. If M is a continuous module, by [20, Theorem 3.11 and Proposition 3.5], $\overline{S} = S/J(S)$ is a regular right continuous ring, thus $\overline{S}_{\overline{S}}$ is an extending module with regular endomorphism ring. Therefore, by Proposition 4.3, \overline{S} is twin-good, so is M.

Recall that if V is a right vector space over a division ring D, then $End_D(V)$ is a regular Baer ring, in fact we have:

Corollary 4.6. Every element of $End_D(V)$ is twin-good, except when $dim(V_D) = 1$ and $D = \mathbb{Z}_2$ or \mathbb{Z}_3 .

Corollary 4.7. If V is a vector space of finite dimension n > 1 over the field \mathbb{Z}_2 , then V is twin-good.

Corollary 4.8. If V is a vector space of countably infinite dimension over an arbitrary field F, then V is twin-good.

ACKNOWLEDGMENTS

We thank Ashish K. Srivastava for reading an earlier version of this manuscript and for his many helpful comments and suggestions.

References

- 1. N. Ashrafi, The unit sum number of some projective modules, *Glasg. Math. J.*, **50**(1), (2008), 71-74.
- 2. N. Ashrafi, Z. Ahmadi, Weakly g(x)-Clean Rings, Iranian Journal of Mathematical Sciences and Informatics, $\mathbf{7}(2)$, (2012), 83-91.
- 3. N. Ashrafi, N. Pouyan, The unit sum number of discrete modules, *Bulletin of the Iranian Mathematical Society*, **37**(4), (2011) ,243-249.
- S. K. Berberian, Baer rings and Baer *-rings, The University of Texas at Austin, 1988.
- V. Camillo, P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra, 212(3), (2008), 599-615.

- H. Chen, Exchange rings with artinian primitive factors, Algebra Represent. Theory, 2, (1999), 201-207.
- H. Chen, Decompositions of linear transformations over division rings, Algebra Colloquium, 19(3), (2012), 459-464.
- A. A. Estaji, z-Weak Ideals and Prime Weak Ideals, Iranian Journal of Mathematical Sciences and Informatics, 7(2), (2012), 53-62.
- J. W. Fisher, R. L. Snider, Rings generated by their units, J. Algebra, 42, (1976), 363-368.
- B. Goldsmith, S. Pabst, A. Scott, Unit sum number of rings and modules, Quart. J. Math. Oxford, 49(2), (1998), 331-344.
- K. R. Goodearl, P. Menal, Stable range one for ring with many units, J. Pure Appl. Algebra, 54(2-3), (1988), 261-287.
- 12. X.J. Guo, K.P. Shum, Baer semisimple modules and Baer rings, *Algebra Discrete Math.*, **2**, (2008), 42-49.
- M. Henriksen, Two classes of rings generated by their units, J. Algebra, 31, (1974), 182–193.
- 14. D. Khurana, A. K. Srivastava, Right Self-injective Rings in Which Each Element is Sum of Two Units, *Journal of Algebra and its Applications*, **6**(2), (2007), 281-286.
- D. Khurana, A. K. Srivastava, Unit sum numbers of right self-injective rings, Bull. Austral. Math. Soc., 75(3), (2007), 355–360.
- 16. I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
- J. Y. Kim, J. K. Park, On Regular Baer rings, Trends in Math., 1(1), (1998), 37-40.
- T. Y. Lam, Lectures on Modules and Rings, GTM 189, Berlin-Heidelberg-New York, Springer Verlag, 1999.
- 19. W. Wm. McGovern, Neat rings, J. Pure Applied Alg., 205(2), (2006), 243-265.
- S.H. Mohamed, B.J. Müller, Continuous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
- W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229, (1977), 269-278.
- 22. S. L. Perkins, Masters thesis, Saint Louis University, St. Louis, MO, 2011.
- R. Raphael, Rings which are generated by their units, J. Algebra, 28, (1974), 199-205
- S.T. Rizvi, C.S. Roman, Baer and quasi-Baer modules, Comm. Algebra, 32(1), (2004), 10–123
- F. Siddique, A. K. Srivastava, Decomposing elements of a right self-injective ring , J. Algebra and Appl., 12(6), (2013).
- 26. A. A. Tuganbaev, Rings and modules with exchange properties, J. Math. Sci., $\mathbf{110}(1)$, (2002), 2348-2421.
- 27. P. Vámos, 2-Good Rings, The Quart. J. Math., 56, (2005), 417-430.
- L. N. Vaserstein, Basss first stable range condition, J. Pure Appl. Algebra, 34(2-3), (1984), 319-330.
- L.Wang, Y. Zhou, Decomposing Linear Transformations, Bull. Aust. Math. Soc., 83(2), (2011), 256-261.